

Article

Reactions and Applications of Titanium Imido Complexes

Nilay Hazari, and Philip Mountford

Acc. Chem. Res., 2005, 38 (11), 839-849• DOI: 10.1021/ar030244z • Publication Date (Web): 12 October 2005

Downloaded from http://pubs.acs.org on March 2, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 41 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Reactions and Applications of Titanium Imido Complexes

NILAY HAZARI AND PHILIP MOUNTFORD*

Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom Received June 28, 2005

ABSTRACT

This Account highlights aspects of the reactions and applications of titanium imido complexes. Over the past decade in particular, the Ti=NR linkage has been shown to couple stoichiometrically with a variety of unsaturated substrates including CO_2 , carbodi-imides, isocyanates, isocyanides, acetonitrile, phosphaalkynes, alkynes, alkenes, and allenes. Especially recently, there has been much interest in using titanium imides as catalysts for hydroamination and olefin polymerization. The advances in these areas are also reviewed.

Introduction

For over 3 decades, transition-metal complexes containing multiply bonded ligands have generated considerable interest and considerable advances have been made in understanding and developing their structures and reactivity.¹⁻⁴ Such complexes may also play a vital role in certain industrial and biological systems. In particular, their involvement in catalysis and as reagents for synthesis has highlighted their utility.

As a terminal ligand, the formally dianionic imido $(NR)^{2-}$ group coordinates through a metal–nitrogen multiple bond.⁵ One of the main points of interest is the reactivity of the unsaturated M=NR linkage itself. However, imido groups can also act as an ancillary or supporting ligands, as is the case for certain ring opening metathesis⁶ or Ziegler Natta⁷ olefin polymerization catalysts. Imido compounds have also been employed in the metal organic chemical vapor deposition (MOCVD) of metal nitrides.^{8,9} Furthermore, they have been implicated in the industrial ammoxidation of propylene¹⁰ and as intermediates in the enzymatic fixation of nitrogen.¹¹

Although many examples of M=NR group reactivity are known,^{1,2} the most reactive metal–imido linkages occur in Group 4.^{2,12–14} A previous review covered aspects of titanium imido chemistry up to 1997.¹² This Account summarizes general routes to titanium imido compounds

10.1021/ar030244z CCC: \$30.25 © 2005 American Chemical Society Published on Web 10/12/2005

and then focuses on recent aspects of their reactivity and applications. There is an emphasis on our own work because the space limitation of *Accounts of Chemical Research* prevents a comprehensive review. Similarly, we do not provide a detailed comparison with analogous zirconium systems.¹⁴

Preparation of Titanium Imido Complexes

The first structurally authenticated titanium imido complexes were described in 1990. Roesky et al.¹⁵ showed that reaction of TiCl₄ with (Me₃Si)₂NP(S)Ph₂ and pyridine formed **1**. Rothwell found that the η^2 -azobenzene ligand in Ti(η^2 -PhNNPh)(OAr)₂(py')₂ (Ar = 2,6-ⁱPr₂C₆H₃) was cleaved upon thermolysis, forming the phenylimido complex **2** (Figure 1).¹⁶

Besides reactions involving N-H or Si-N bond cleavage,^{2,8,12,17} titanium imido complexes can be synthesized using several other methods. Several groups have reported the preparation of imido complexes through the oxidation of Ti^{II} complexes.^{18–21} For example, TiCl₂(TMEDA)₂ reacts with Ph₂N₂, forming **3** (eq 1).¹⁸ Recently, Mindiola et al.²² demonstrated that a Ti^{IV} imido complex could be prepared from a Ti^{III} precursor through an oxidatively induced α -hydrogen abstraction reaction. Ti^{IV} imido complexes have also been prepared from TiCl₃ and TiCl₃(THF)₃.^{23,24} Another route into titanium imido complexes was through the reactions of $Ti(L)Cl_2$ (L = tetratolylporphyrinato²⁵ or dimethylcalix[4] arene dianion²⁶) with 2 equiv of MNHR (M = Li or K, R = alkyl or aryl). Transient imido complexes such as 4 (eq 2) can be generated from the tris(amido) species Ti(tBu₃SiNH)₃Cl.²⁷

A useful advance toward a general route to titanium imido compounds was the report that the *tert*-butylimido complexes Ti(N^tBu)Cl₂(L)_n [L = py, n = 2 (**5**) or 3 (**6**); L = NC₅H₄^tBu, n = 2 (**7**)] could be readily obtained in multigram quantities from TiCl₄, 'BuNH₂, and the appropriate pyridine (Scheme 1).^{28,29} Arylimido analogues could not be obtained directly from ArNH₂ and TiCl₄, but arylamine/ *tert*-butylimide exchange reactions of **6** readily afforded arylimido complexes of the type Ti(NAr)Cl₂(py)₃ [Ar = 2,6-Me₂C₆H₃ (**8**), 2,6-ⁱPr₂C₆H₃ (**9**), Ph (**10**), Tol (**11**), or

Nilay Hazari earned a B.Sc. (honors) degree and an M.Sc. degree at the University of Sydney (1999–2003). He is currently undertaking a D.Phil. degree at the University of Oxford under the supervision of Dr. P. Mountford and Professor J. C. Green.

Philip Mountford gained a D.Phil. degree at the University of Oxford under the supervision of Professor M. L. H. Green. After a further period in Oxford as a Junior Research Fellow, he was appointed to a lectureship at the University of Nottingham. In 1998, he returned to Oxford, where he is a Reader in Inorganic Chemistry. He is a past recipient of the Royal Society of Chemistry's Sir Edward Frankland Fellowship and was recently a visiting professor at the Université Louis Pasteur, Strasbourg, and the Université Bordeaux I, France, and also at the University of Heidelberg, Germany.

^{*} To whom correspondence should be addressed. Telephone: +44-1865-285140. Fax: +44-1865-285141. E-mail: philip.mountford@ chem.ox.ac.uk.

FIGURE 1. First crystallographically characterized six- (1)¹⁵ and fivecoordinate (2)¹⁶ titanium imido complexes.

4-NO₂C₆H₄ (**12**)].²⁹ Such exchange reactions are now a widespread method for preparing titanium arylimido complexes.³⁰ Complexes of the type $Ti(NR)Cl_2(py)_3$ (R = alkyl or aryl) have proven to be extremely convenient entry points into titanium imido chemistry, with a wide variety of ancillary ligands being introduced via metathesis reactions (Figure 2 shows a selection).^{12,31,32}

Another general synthetic advance was the reaction of $Ti(NMe_2)_2Cl_2$ with RNH_2 , which provides an efficient and high-yielding route to the compounds $Ti(NR)(NHMe_2)_2$ - Cl_2 (**13**) (R = alkyl or aryl, eq 3).³³ The major advantage of this route is that it allows complexes with a wider variety of imido N substituents to be synthesized. Terminal diphenylhydrazido(2-) compounds can be prepared analogously.³⁴ Certain complexes $Ti(NR)(NHMe_2)_2Cl_2$ (R = alkyl, aryl, or NPh₂) have been used to prepare imido

compounds with calix[4]arene, triazacyclononane, and tris(pyrazolyl)methane coligands.^{26,34–36}

 $\label{eq:rescaled_$

A wide range of titanium complexes incorporating a terminal imido ligand can be readily synthesized. Recent efforts have mostly focused on their reactivity. An overview of the stoichiometric and catalytic reactions and applications of titanium imido compounds follows.

Stoichiometric Reactions

C–H, H–H, and S–H Bond Activation. Several reports of C–H activation by titanium imido species have appeared. Wolczanski et al. showed that the transient species $Ti(NSi^{B}Bu_{3})(NHSi^{B}Bu_{3})_{2}$ (4) was capable of activating C–H bonds in benzene.²⁷ The related disiloxane transient species $Ti(NSi^{t}Bu_{3})(OSi^{t}Bu_{3})_{2}$ (14) was more reactive than 4,³⁷ and these reactions have been studied computationally.³⁸ Interestingly, although 14 activated a range of alkyl (including CH₄) and aryl C–H bonds, it reacted with alkynes to form metallacycles (Scheme 2).

The reaction between $Cp_2^*Ti(NPh)$ and $HC \equiv CR$ (R = Ph or SiMe₃) leads to alkynyl C–H bond activation giving the anilido–acetylide complexes $Cp_2^*Ti(NHPh)(C \equiv CR)$ (15).¹⁹ The reaction proceeds without observable metallacylic intermediates. In contrast, the reaction of $Cp_2^*Ti(NPh)$ with acetylene itself gives the structurally characterized azametallacycle $Cp_2^*Ti\{N(Ph)CH=CH\}$

FIGURE 2. Examples of titanium imido species synthesized from $Ti(N^tBu)Cl_2(py)_3$ (6).

(16).¹⁹ The preference for acetylenic C–H activation (deprotonation) over [2+2] cycloaddition is attributed to steric interactions between the imide and alkynyl substituents. As discussed below, activation of sp³-hybridized C–H bonds was observed in the reactions of Ti(N^tBu)(κ^3 -N₂N^{py})(py) (N₂N^{py} = (2-C₅H₄N)CMe(CH₂NSiMe₃)₂) (17) with MeC=CR (R = Me or Ph),³⁹ whereas with HC=CPh, an azametallacycle was isolated.⁴⁰

Titanium imido complexes are also capable of activating H–H and S–H bonds. For example, $Cp_2^*Ti(NPh)^{19}$ and homologues²¹ add H₂ in a 1,2-fashion across the Ti=NR bond to form hydride–amide derivatives. $Cp_2Ti(N'Bu)(py)$ (**18**) reacts with MeSH to yield $Cp_2Ti(SMe)_2$ (**19**) and with H₂S to give $Cp_2Ti(\mu$ -S)₂TiCp₂ (**20**) or $Cp_2Ti(SH)_2$ (**21**).⁴¹ The corresponding reaction of Ti(N'Bu)(Me₄taa) (H₂-Me₄taa = tetramethyldibenzotetraaza[14]annulene) with H₂S gave the terminal sulfide Ti(S)(Me₄taa).⁴²

Reactions with Alkenes and Allenes. Wolczanski and Bennett showed that $Ti(NSi^{t}Bu_{3})(OSi^{t}Bu_{3})_{2}$ (14) reacts with ethylene to yield a mixture of the azametallacyclic product $Ti\{CH_{2}CH_{2}N(Si^{t}Bu_{3})\}(OSi^{t}Bu_{3})_{2}$ and the vinylic C–H activation product $Ti(NHSi^{t}Bu_{3})(CHCH_{2})(OSi^{t}Bu_{3})_{2}$.⁴³ Andersen and Bergman have reported that $Cp_{2}^{*}Ti(NPh)$ reacts reversibly with ethylene to form $Cp_{2}^{*}Ti\{N(Ph)CH_{2}CH_{2}\}$ (22).¹⁹

Reaction of Ti(N^tBu)(κ^3 -N₂N^{py})(py) (17) with the allenes Me(H)C=C=CH₂ and Ph(H)C=C=CH₂ generated corresponding titanaazetidines **23** and **24**, respectively.⁴⁴ The exocyclic double bonds have an *E* configuration.

Reactions with RC=CR', MeC=N, RC=P, and RN=C. As metioned, Cp₂^{*}Ti(NPh) reacts with acetylene to form Cp₂^{*}Ti{N(Ph)CH=CH} (**16**),¹⁹ while transient **14** (Scheme 2) also undergoes an *inter*molecular [2+2] cycloaddition reaction.⁴³ The carborane compound Ti{ η^5, η^1 -Me₂C(C₅H₄)-(C₂B₁₀H₁₀){(N^tBu)(py) reacts with phenylacetylene to generate four-membered metallacycles.⁴⁵ In a series of papers, Livinghouse et al. described the use of *intra*molecular imide–alkyne cycloaddition reactions that lead to a range of organic heterocycles.^{46–48} Catalytic aspects of this work are discussed later in the section on hydroamination.

Unexpectedly, the reaction of Ti(N'Bu)(κ^3 -N₂N^{py})(py) (17) with the internal alkynes MeC=CR (R = Me or Ph) led to the titanazetidines **23** and **24** (Scheme 3),³⁹ which were also formed with Me(H)C=C=CH₂ and Ph(H)C=C= CH₂. It was proposed that addition of a methyl C–H bond across the Ti=NR linkage occurs, followed by H atom transfer and the formation of a π -bonded allene ligand. [2+2] cycloaddition gives the titanazetidine products.

In contrast, the reaction of **17** or Ti(N-2,6-ⁱPr₂C₆H₃)-(κ^3 -N₂N^{py})(py) (**25**) with *terminal* alkynes HC=CR (R = Ph or Tol) gave the expected [2+2] cycloaddition products Ti{N('Bu)CHCR}(κ^3 -N₂N^{py}) and Ti{N(2,6-ⁱPr₂C₆H₃)CHCR}-(κ^3 -N₂N^{py}), respectively.⁴⁰ These reactions are discussed further in the hydroamination section.

Reactions with phosphaalkynes have been described. Ti(N^tBu){Me₃SiN(CH₂CH₂NSiMe₃)₂}(py) (**26**) reacts with 'BuCP to give the [2+2] cycloaddition product Ti(PC^tBu-N^tBu){Me₃SiN(CH₂CH₂NSiMe₃)₂} (**27**).⁴⁹ The phosphaalkyne-derived phosphorus is bonded to the nitrogen orig-

Scheme 4

inating from the imido ligand, consistent with the respective bond polarities and steric factors. In an analogous fashion to **26**, Ti(N^tBu)(κ^3 -N₂N^{py})(py) (**17**) undergoes a [2+2] cycloaddition reaction with ^tBuCP to form **28**, which possesses a planar four-membered metallacycle and a κ^2 bound N₂N^{py} ligand.⁵⁰

In contrast, the reaction between $Ti(N^{t}Bu)Cl_{2}(py)_{3}$ (6) and 'BuCP generated **29**, which contains *two* phosphaalkyne units (Scheme 4).⁴⁹ The formation of the $TiC_{2}P_{2}N$ core in **29** was presumed to proceed via the sequential [2+2] cycloadditions of 'BuCP, first with Ti= NR and then with the resulting P=C bond. The course of this reaction is sensitive to the identity of the imido substituent. Treatment of $Ti(NR)Cl_2(py)_3$ (R \neq ^tBu) with ^tBuCP gave the 1,2,4-azadiphospholes **30** (Scheme 4).⁵¹

The reaction of **17** with MeCN⁵⁰ generates the binuclear derivative **31**, which formally contains a doubly deprotonated *tert*-butylacetamidinate ligand and a κ^2 -bound N₂N^{py} (eq 4). The titanium centers in **31** form part of a ladder-type motif composed of three four-membered metallocyclic rings. In **31**, the carbon of the MeCN moiety is bonded to the imido-derived nitrogen, which is in contrast to that found with ^tBuCP, which favors N–P formation (cf. **28**). Compound **31** undergoes a quantitative cycloreversion reaction at elevated temperatures, yielding MeCN and four-coordinate Ti(N^tBu)(κ^3 -N₂N^{py}).

Treatment of **17** with the isocyanides 'BuNC and PhNC gave no isolable products.⁵² However, the reaction with XylNC resulted in the coupling of two molecules of isocyanide with the Ti=N'Bu bond forming the titanocycle **32** (Scheme 5).⁵² No intermediates were observed. Treatment of **17** with 3 equiv of alkyl isocyanides RR'CHNC bearing a C–H bond adjacent to the NC group gave highly selective coupling with the Ti=N'Bu bond.⁵² For example, the reaction of **17** with MeNC, EtNC, "BuNC, or PhCH₂-NC gave the diaminodihydropyrimidine derivatives **33**

(Scheme 5). These highly regiospecific reactions involve both C–N and C–C bond formation as well as a C–H bond migration. A detailed mechanism was proposed.⁵²

Reactions with Substrates Containing C=O or C=N Bonds. An interesting difference in reactivity was observed in reactions between the complexes Cp*Ti(NR)- $\{MeC(N^{i}Pr)_{2}\}$ [R = ^tBu (**34**) or 2,6-Me₂C₆H₃ (**35**)] and CO₂ (Scheme 6).⁵³ Depending upon the imido N substituent, the reaction either resulted in CO₂ cycloaddition-isocyanate extrusion or double CO2 addition. The reaction of either 34 or 35 with CO₂ gave the N,O-bound carbamate complexes $Cp^{Ti}{MeC(N^{i}Pr)_{2}}{O(CO)NR}$ [R = ^tBu (36) or $2,6-Me_2C_6H_3$ (37)]. The *tert*-butyl derivative 36 did not react further with CO₂ but underwent a retrocyclization to yield ^tBuNCO and the μ -oxo dimer $Cp_2^*Ti_2\{MeC(N^iPr)_2\}_2(\mu-O)_2$ (**38**), a reaction that has been modeled computationally.⁵⁴ Under identical conditions, the aryl derivative 37 reacted smoothly with further CO₂ to give 39.

A marked difference in reactivity between arylimido and *tert*-butylimido compounds was also observed in the reactions between the complexes $Cp^*Ti(NR) \{MeC(N^iPr)_2\}$ $[R = {}^{t}Bu (34), 2,6-Me_2C_6H_3 (35), or Tol (40)]$ and isocyanates ArNCO (Ar = Tol or 2,6-Me_2C_6H_3).⁵⁵ Addition of 1 equiv of ArNCO to **35** or **40** led to the quantitative formation of N,O-bound ureates $Cp^*Ti\{N(Ar)C(NAr')O\}$ - $\{MeC(N^iPr)_2\}$ (**41**). The reaction of ureate $Cp^*Ti\{N(Tol)C (NTol)O\}\{MeC(N^iPr)_2\}$ with further TolNCO generated the O,O-bound biuret complex $Cp^*Ti\{OC(NTol)N(Tol)C (NTol)O\}\{MeC(N^iPr)_2\}$ (**42**). In contrast, the reactions between $Cp^*Ti(N'Bu)\{MeC(N^iPr)_2\}$ (**34**) and isocyanates RNCO (R = ${}^{t}Bu$ or aryl) were very slow, with ultimate products being the μ -oxo dimer **38** and the carbodiimides ^tBuNCR. NMR evidence was advanced for the N,O-bound ureate intermediates.

The macrocycle-supported complexes Ti(NR)(Me₄taa) [R = 'Bu (**43**), Ph (**44**), Tol (**45**), or 4-NO₂C₆H₄ (**46**)] reacted with isocyanates or CO₂ to form [2+2] cycloaddition products generally of the type Ti{N(R)C(O)E}(Me₄taa) (E = O, N'Bu, or N-aryl).⁵⁶ For example, the reactions of **44**, **45**, and **46** with TolNCO gave the N,N-bound ureates Ti-{N(Ar)C(O)N(Tol)}(Me₄taa) (**47**) (eq 5). Treatment of Ti-{N(Ph)C(O)N(Tol)}(Me₄taa) with an excess of PhNCO gave TolNCO and Ti{N(Ph)C(O)N(Tol)}(Me₄taa) via a slow, reversible insertion reaction into the Ti-N bond. In contrast, the reaction of **43** and 'BuNCO gave the N,Obound ureate Ti{N'Bu)C(N'Bu)O}(Me₄taa) (**48**).

The compounds **43**–**46** appear to have a strong preference for forming N,N- rather than N,O-bound ureates with isocyantes. In contrast, most other Group 4 imido species form N,O-bound ureates as shown in Scheme 6 for the reactions of Cp*Ti(NR){MeC(NⁱPr)₂} and also for the reaction of { η -1,3-C₅H₃(SiMe₃)₂}₂Ti(NSiMe₃) with Me₃-SiNCO.²¹ Ti{ η ,⁵ η ¹-Me₂C(C₅H₄)(C₂B₁₀H₁₀){(NⁱBu)(py) reacts with PhNCO to form an oxo-titanium oligomer and PhNCNⁱBu, likely via an N,O-bound ureate.⁴⁵

The reactions of the calix[4]arene-supported complex Ti(N'Bu)(Me₂calix) (**49**) (Me₂calix = dimethylcalix[4]arene dianion) with CO₂ and CS₂ have been reported.²⁶ The reaction of **49** with CO₂ was fast, giving Ti{N('Bu)C(O)O}-(Me₂calix) (**50**), which in turn eliminated 'BuNCO to give Ti₂(Me₂calix)₂(μ -O)₂ (**51**). The corresponding reaction with CS₂ was significantly slower and resulted in the formation of the bridging sulfido complex Ti₂(Me₂calix)₂(μ -S)₂ (**52**) and 'BuNCS without any observable intermediate of the type Ti{N('Bu)C(S)S}(Me₂calix) (**53**). Reactions of other titanium imides with CS₂ have been reported.^{45,55}

The reactions of Ti(NR)Cl₂(py)₃ [R = ^tBu (**6**) or 2,6-ⁱPr₂C₆H₃ (**9**)] with α -diimines depend critically upon both the imido N- and diimine N- and backbone C-substituents.⁵⁷ For example, the reaction of **9** with PhNC(Me)C-(Me)NPh gave the simple adduct Ti(N-2,6-ⁱPr₂C₆H₃)Cl₂{ η^2 -PhNC(Me)C(Me)NPh}(py) (**54**). In contrast, the reaction of **6** with ArNC(H)C(H)NAr (Ar = Tol or 2,6-Me₂C₆H₃) did

not give analogues of **54** but instead formed the corresponding Ti(NAr)Cl₂(py)₃ and 'BuNC(H)C(H)NAr. These products are those expected from a stoichiometric titanium imide/organic imine metathesis reaction. However, and in contrast to observations for zirconocene imido systems,¹⁴ while mixtures of **6** and PhC(NAr)H (Ar = 2,6-Me₂C₆H₃ or Tol) gave quantitative conversion to the corresponding Ti(NAr)Cl₂(py)₃ and PhC(N'Bu)H, kinetic studies showed that the rate-limiting step was zero-order in **1**.⁵⁸

Reactions of titanium imido compounds with PhNO, aldehydes, and ketones have all been reported^{21,45,55,59} and in each case give Ti=NR/C=O or N=O metathesis products. Reactions with carbodiimides have also been described,^{55,56,60,61} with the first example being for Ti(NTOI)-(Me₄taa) with di-*p*-tolylcarbodiimide, which formed the corresponding biuret cycloaddition product.⁵⁶ Catalytic reactions involving carbodiimide C=N bond metathesis are discussed below.

Catalytic Reactions

Hydroamination. Titanium imido complexes play a vital role in hydroamination reactions, a topical area that has been reviewed in detail recently.^{62–64} Livinghouse et al. reported the catalytic intramolecular hydroaminations of alkyl-amines using CpTiCl₃ (20% loading) to form a series of five- and six-membered cyclic imines.^{46,47} The proposed mechanism (Scheme 7) involves intermediate imido complexes of the type **55**, which undergo an intramolecular cycloaddition reaction to generate an azametallacycle, which subsequently releases the target imine regenerating CpTiCl₃. This general methodology has also been used to prepare a range of different heterocycles using stoichiometric amounts of CpTiClMe₂ and various reagents to cleave the intermediate azametallacycles.^{46–48}

Half-sandwich titanium imido complexes have also been implicated in alkyne and allene hydroamination reactions which were initially thought to be catalyzed by the bis(cyclopentadienyl) compound Cp₂TiMe₂ (56). Doye reported the hydroamination of both symmetrical and unsymmetrical alkynes using 56.65 The regioselectivity of the reactions was of particular interest in the case of unsymmetrical alkynes because only the anti-Markovnikov product was observed. It was first suggested that 56 eliminates methane in the presence of a primary amine to generate a catalytically active titanium imido complex Cp₂Ti(NR). However, mechanistic studies by Bergman and Johnson suggest that the true active species is 58 (Scheme 8),⁶⁶ which arises from a cyclopentadienide/amide exchange reaction. Compound 58 can be trapped with pyridine to form 57.

The proposed catalytic cycle for allene hydroamination is shown in Scheme 8 and proceeds via an azametallacyclobutane **59** that is rapidly protonated by amine to generate tris(amido) titanium complex **60**. This expels enamine and regenerates **58**. Density Functional Theory studies of alkyne and allene hydroamination by **58** (together with a comparison with the corresponding hypothetical reaction for alkenes) have been reported.⁶⁷

As part of a study of Group 4 bis(sulfonamido) complexes in the intramolecular hydroamination of alkynes and allenes, Bergman et al. reported that the titanium bis-(sulfonamido)-supported arylimido complex **61a** catalytically converted 3-aminopropyl allene into the corresponding cyclic imine at a rate comparable to that of an analogous bis(dimethylamide) complex **61b**.⁶⁸ This supports the view that imido species are important species in the catalytic cycles for hydroamination.

Recently, the bis(guanidinate) titanium imido complex $Ti(N-2,6-Me_2C_6H_3)\{Me_2NC(N^iPr)_2\}_2$ (62) was used as a hydroamination catalyst.⁶⁹ The results of the hydroamination of four representative alkynes are summarized in Table 1. Phenylacetylene preferentially undergoes anti-Markovnikov addition with 2,6-dimethylaniline, while hydroamination of 1-hexyne generated predominantly Markovnikov products. Compound 62 was not as efficient as Bergman's CpTi(NAr)(ArNH)(py) (57). A number of other hydroamination systems featuring titanium imido complexes have been described and reviewed recently.^{64,70,71}

A structurally characterized imido-acetylene [2+2] cycloaddition product that corresponds to the key intermediate in the anti-Markovnikov addition of a primary amine to a terminal acetylene has been described (**63**).⁴⁰ Addition of 1 equiv of 'BuNH₂ to a solution of the related metallacyclic complex Ti{N('Bu)CH=CPh}(κ^3 -N₂N^{py}) (**64**) produced Ti(N'Bu)(κ^3 -N₂N^{py})(py) (**17**) and the hydroamination Table 1. Results for the Reaction of 2,6-Dimethylaniline with Alkynes Catalyzed by Ti(N-2,6-Me₂C₆H₃){(Me₂N)C(NⁱPr)₂}₂ (62)

substrate	time (h)	yield (%)	A/M^a
PhC≡CPh	120	55	
MeC≡CMe	18	18	
PhC≡CH	18	94	73:27
$C_4H_9C \equiv CH$	48	88	14:86

^a Ratio of anti-Markovnikov/Markovnikov products.

product *trans*-cinnamyl(*tert*-butyl)amine. Carrying out the same reaction with ${}^{1}BuNH_{2}$ and phenyl acetylene in the presence of 20 mol % of **17** at ambient temperature led to several turnovers as well as partial degradation of the Ti complex.

It has been suggested that titanium imido complexes may also be the active species in the hydroamination of phosphaalkynes by titanium complexes. Nixon et al. showed that the reaction of catalytic amounts of TiCl₄ with RNH₂ (R = ^tBu or ⁱPr) followed by addition of ^tBuCP yields the dialkyldiaminophosphines P(NHR)₂CH^tBu in nearquantitative yields.⁷² The first step in the proposed mechanism of this reaction is the formation of a titanium imido complex. More recently, Regitz and Asmus showed that the reaction of CpTiCl₃ with ^tBuNH₂ and ^tBuCP yielded

the metallocyclic complex **65** (Scheme 9), a possible intermediate in the hydroamination of phosphaal-kynes. 73

Carbodiimide Metathesis. As mentioned, Ti(NTol)-(Me₄taa) (**66**) reacts with di-*p*-tolylcarbodiimide to give Ti{N(Tol)C(NTol)N(Tol)}(Me₄taa) (**67**).⁵⁶ This type of species has been implicated as an intermediate in carbodiimide C=N bond metathesis reactions. Richeson et al. subsequently reported that the guanidinate-supported complex Ti(NAr){Me₂NC(NⁱPr₂)}₂ (**68**, Ar = 2,6-Me₂C₆H₃) is an effective C=N bond metathesis catalyst for alkyl- and aryl-carbodiimides.⁶¹ In the presence of a catalytic amount of **68**, metathetical exchange occurs between ⁱPrNCNⁱPr and CyNCNCy, yielding the mixed species ⁱPrNCNCy (Scheme 10). In addition to ⁱPrNCNCy, other carbodiimides ArNCNⁱPr and ArNCNCy were also observed. These arise from the exchange of carbodiimides with the imido ligand of **68**.

It has also been reported that the complexes Ti(NAr)-{ $Me_2NC(N^iPr_2)$ }₂ [$Ar = 2,6-Me_2C_6H_3$ (**68**) or C_6F_5 (**69**)] are precatalysts for the guanylation of amines with carbodiimides.⁶⁰ In the presence of either of these imides, aliphatic amines undergo direct guanylation with carbodiimides to yield trialkylguanidines in good yield. The proposed mechanism (Scheme 11) begins with [2+2] cycloaddition of a carbodiimide to the Ti=NAr bond. A proton-transfer reaction between an aromatic amine

and the metal-bound dianionic guanidate ligand then releases the neutral guanidine and reforms the Ti=NR bond. The first step in this cycle was supported by the isolation of the diazametallacycle, which forms as a result of the [2+2] cycloaddition between di-*iso*-propylcarbodiimide and **69**. Complexes **68** and **69** are also capable of facilitating a transamination reaction between guanidines and amines.

Olefin Polymerization. Initial reports of titanium imido complexes acting as ethylene polymerization catalysts appeared in 2000. A series of titanium compounds containing triazacyclononane ligands with a pendant alkylimide arm were found to be ethylene polymerization precatalysts when methylaluminoxane (MAO) was used as a cocatalyst.74 Subsequently, Nielson et al. reported that the complexes $TiCl_2(NR)(TMEDA)$ (R = ^tBu, 2-tBuC₆H₄, or 2-PhC₆H₄) also catalyzed the polymerization of ethylene.75 However, even the most efficient precatalyst, TiCl₂(N-2-C₆H₄CMe₃)(TMEDA) had only moderate activity (ca. 13 kg(PE) mol⁻¹ h⁻¹ bar⁻¹), although it was capable of slowly polymerizing 1-hexene. The first highly active imidotitanium ethylene polymerization catalysts were only recently reported.35 A family of ca. 50 precatalysts $Ti(NR)(Me_3[9]aneN_3)Cl_2$ (R = alkyl or aryl; $Me_3[9]aneN_3 = trimethyltriazacyclononane)$ was prepared using semi-automated procedures. High-throughput screening identified seven highly active precatalysts with activities in the range of 3400-10 000 kg(PE) mol⁻¹ $h^{-1} bar^{-1}$.

Catalytically active well-defined imidotitanium monoalkyl cations [Ti(N^tBu)(Me₃[9]aneN₃)R]⁺ [R = Me (**70**⁺) or CH₂SiMe₃ (**71**⁺)] have very recently been reported.⁷⁶ Cation **71**⁺, which has a β -Si–C···Ti agostic bond, reacts with di*iso*-propylcarbodiimide exclusively at the Ti–CH₂Si-Me₃ group, forming **72**⁺. Cation **70**⁺ reacts with AlMe₃ (again exclusively at the metal–alkyl bond) to form the heterobimetallic cation **73**⁺. Other macrocycle-supported cationic titanium imido complexes have been reported,⁷⁷ and very recently, Mindiola et al. reported a well-defined cationic compound supported by a $\beta\text{-diketiminate ligand.}^{\rm 24}$

Aside from olefin polymerization, it has also been shown that the chiral *ansa*-titanocene imido complex (**74**) initiates the syndiospecific polymerization of methyl methacrylate in the presence of an aluminum activator.⁷⁸

Materials and Supramolecular Chemistry

Titanium nitride films have very useful characteristics, including excellent thermal stability and resistance to chemical attack. Winter studied a series of monomeric and polynuclear titanium imido complexes and reported that alkylimido species can be important gas-phase species in the MOCVD formation of titanium nitride films from molecular precursors.8,79 A number of other titanium imido compounds have been studied with regard to the MOCVD formation of TiN. For example, Carmalt and Parkin evaluated a series of complexes of the type Ti(NR)- $Cl_2(L)_x$ (x = 1, L = tridentate N donor; x = 2 or 3, L = monodentate N donor).9,17 Most of the precursors formed titanium nitride films. However, bulkier imido complexes and those with chelating ligands tended to produce thin films with significant oxygen and carbon contamination. The best single-source precursor was found to be TiCl₂(N^t-Bu)(py)₃ (6), which gave gold-colored films of stoichiometry $TiN_{1.0}$. Interestingly, despite the similar nature of the coordination environment around the metal in the series of compounds examined, significant differences in film quality were observed.

Imido compounds have been minimally studied in the context of supramolecular chemistry. In the first such systematic study in Group 4, the crystal structures of a number of closely related compounds $Ti(NR)Cl_2(NHMe_2)_2$ (13) (R = ⁱPr, Ph, 2,3,5,6-Cl₄C₆H, 2-CF₃C₆H₄, 2-^tBuC₆H₄, or C₆F₅) were evaluated and the supramolecular interactions were compared.³³ Except for R = 2-'BuC₆H₄ and C₆F₅, the molecules are linked in one-dimensional infinite chains by intermolecular Ti-Cl····H-N hydrogen bonds. For Ti-(NC₆F₅)Cl₂(NHMe₂)₂, however, offset face-to-face interactions between the C₆F₅ rings led to a quite different, stacked structure. The bulky *o*-'Bu substituent in Ti(N-2-'BuC₆H₄)Cl₂(NHMe₂)₂ also disrupts the formation of Ti-Cl····H-N hydrogen-bonded chains, and this compound exists as discrete hydrogen-bonded dimers in the solid state.

Conclusion and Future Prospects

Over the last 15 years, the range of reactions involving titanium imido complexes has steadily increased. The Ti= NR linkage has been shown to couple stoichiometrically with a variety of unsaturated substrates. The choice of imido N substituent is critical in these reactions and a significant difference in reactivity is often observed between alkyl- and aryl-imides. In some cases, sequential, multiple coupling reactions are facile. It has also been shown that the Ti=NR moiety can activate C-H, H-H, and S-H bonds.

In addition, there are a growing number of reports describing the catalytic activity of titanium imido species, with the imido ligand either acting as a supporting ligand or reactive site. Titanium imido compounds have been used as catalysts for hydroamination, carbodiimide metathesis, and olefin polymerization. Given the enormous interest in both hydroamination and ethylene polymerization and the initial promise that titanium imido complexes have shown in performing these transformations, it is likely that research into titanium imido species will focus on these as well as other areas of catalysis in future years.

We thank our graduate and postdoctoral co-workers and academic and industrial collaborators for their contribution to the work of our own group. We are also grateful to the U.K. and European funding agencies, charities, and industrial collaborators who have supported our efforts. N. H. thanks the Rhodes Trust for a scholarship.

References

- Nugent, W. A.; Mayer, J. M. Metal–Ligand Multiple Bonds; Wiley-Interscience: New York, 1988.
- Wigley, D. E. Organoimido complexes of the transition metals. Prog. Inorg. Chem. 1994, 42, 239–482.
- (3) Parkin, G. Terminal chalcogenido complexes of the transition metals. Prog. Inorg. Chem. 1998, 47, 1–165.
- (4) Schrock, R. R. Transition metal-carbon multiple bonds. *Dalton Trans.* 2001, 2541–2550.
- (5) Cundari, T. R. Computational studies of transition metal-main group multiple bonding. *Chem. Rev.* 2000, 100, 807–818.
- (6) Schrock, R. R. Recent advances in olefin metathesis by molybdenum and tungsten imido alkylidene complexes. J. Mol. Catal. A: Chem. 2004, 213, 21–30.
- (7) Bolton, P. D.; Mountford, P. Transition metal imido compounds as Ziegler–Natta olefin polymerisation catalysts. Adv. Synth. Catal. 2005, 347, 355–366.
- (8) Winter, C. H.; Sheridan, P. H.; Lewkebandara, T. S.; Heeg, M. J.; Proscia, J. W. A single-source precursor to titanium nitride thin films. *J. Am. Chem. Soc.* **1992**, *114*, 1095–1097.
- (9) Carmalt, C. J.; Newport, A. C.; Parkin, I. P.; Mountford, P.; Sealey, A. J.; Dubberley, S. R. Synthesis of TiN thin films from titanium imido complexes. *J. Mater. Chem.* **2003**, *13*, 84–87.

- (10) Hanna, T. A. The role of bismuth in the SOHIO process. Coord. Chem. Rev. 2004, 248, 429–440.
- (11) Kozak, C. M.; Mountford, P. Revelations in dinitrogen activation and functionalization by metal complexes. *Angew. Chem. Int. Ed.* 2004, 43, 1186–1189.
- (12) Mountford, P. New titanium imido chemistry. *Chem. Commun.* 1997, 2127–2134.
- (13) Gade, L. H.; Mountford, P. New transition metal imido chemistry with diamido-donor ligands. *Coord. Chem. Rev.* 2001, 216–217, 65–97.
- (14) For aspects of zirconium imido chemistry, see Duncan, A. P.; Bergman, R. G. Selective transformations of organic compounds by imidozirconocene complexes. *Chem. Rec.* 2002, *2*, 431–445.
- (15) Roesky, P. H.; Voelker, H.; Witt, M.; Noltemeyer, M. Synthesis and structure of Ph₂P(S)N=TiCl₂·3C₅H₅N, the first imidotitanium complex. Angew. Chem. Int. Ed. **1990**, *29*, 669–670.
- (16) Hill, J. E.; Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P. Synthesis, structure, and reactivity of aryloxo(imido)titanium complexes. *Angew. Chem. Int. Ed.* **1990**, *29*, 664–665.
- (17) Carmalt, C. J.; Newport, A. C.; Parkin, I. P.; White, A. J. P.; Williams, D. J. Titanium imido complexes as precursors to titanium nitride. *J. Chem. Soc., Chem. Commun.* **2002**, 4055– 4059.
- (18) Duchateau, R.; Williams, A. J.; Gambarotta, S.; Chiang, M. Y. Carbon-carbon double-bond formation in the intermolecular acetonitrile reductive coupling promoted by a mononuclear titanium(II) compound. *Inorg. Chem.* **1991**, *30*, 4863–4866.
- (19) Polse, J. L.; Andersen, R. A.; Bergman, R. G. Reactivity of a terminal Ti^{IV} imido complex toward alkenes and alkynes. *J. Am. Chem. Soc.* **1998**, *120*, 13405–13414.
- (20) Mullins, S. M.; Duncan, A. P.; Bergman, R. G.; Arnold, J. Reactivty of a titanium dinitrogen complex supported by guanidinate ligands. *Inorg. Chem.* 2001, 40, 6952–6963.
- (21) Hanna, T. E., Keresztes, I.; Lobkovsky, E.; Bernskoetter, W. H.; Chirik, P. J. Synthesis of a base-free titanium imido and a transient alkylidene from a titanocene dinitrogen complex. *Organometallics* 2004, 23, 3448–3458.
- (22) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Snapshots of an oxidatively induced α-hydrogen abstraction reaction to prepare a terminal and four-coordinate titanium imide. *Chem. Commun.* 2003, 1554–1555.
- (23) Nikiforov, G. B.; Roesky, H. W.; Magull, J.; Labahan, T.; Vidovic, D.; Noltemeyer, M.; Schmidt, H.; Hosmane, N. S. Synthesis and investigation of the stability of Ti(III) β-diketiminato complexes. *Polyhedron* **2003**, *22*, 2669–2681.
- (24) Basuli, F.; Clark, R. L.; Bailey, B. C.; Brown, D.; Huffman, J. C.; Mindiola, D. J. Latent low-coordinate titanium imides supported by a sterically encumbering β-diketiminate ligand. *Chem. Commun.* 2005, 2250–2252.
- (25) Berreau, L. M.; Young, V. G., Jr.; Woo, K. L. Synthesis and characterization of (imido)titanium(IV) porphyrin complexes. *In*org. Chem. **1995**, 34, 527–529.
- (26) Dubberley, S. R.; Friedrich, A.; Willman, D. A.; Mountford, P.; Radius, U. Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes. *Chem.-Eur. J.* 2003, *9*, 3634–3654.
- (27) Cummins, C. C.; Schaller, C. P.; van Duyne, G. D.; Wolczanski, P. T.; Chan, A. W. E.; Hofmann, R. (Tri-*tert*-butysilyl)imido complexes of titanium. J. Am. Chem. Soc. **1991**, *113*, 2985–2994.
- (28) Dunn, S. C.; Batsanov, A. S.; Mountford, P. A General route to sandwich and half-sandwich titanium imido complexes. *Chem. Commun.* **1994**, 2007–2008.
- (29) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W.; Mountford, P.; Shishkin, O. V. Synthesis and imido-group exchange reactions of *tert*-butylimidotitanium complexes. *Dalton Trans.* **1997**, 1549– 1558.
- (30) Exchange reactions with silylamines have also been reported: Li, Y.; Banerjee, S.; Odom, A. L. Synthesis and structure of (triphenylsilyl)imido complexes of titanium and zirconium. Organometallics 2005, 24, 3272–3278.
- (31) Wilson, P. J.; Blake, A. J.; Mountford, P.; Schröder, M. Syntheses and structures of a new class of aza- and thio-ether macrocyclic d⁰ imido complexes. *Chem. Commun.* **1998**, 1007–1008.
- (32) Dunn, S. C.; Hazari, N.; Jones, N. M.; Moody, A. G.; Blake, A. J.; Cowley, A. R.; Green, J. C.; Mountford, P. Titanium imido complexes of cyclooctatetraenyl ligands. *Chem.*—*Eur. J.* 2005, *11*, 2111–2124.
- (33) Adams, N.; Bigmore, H. R.; Blundell, T. L.; Boyd, C. L.; Dubberley, S. R.; Sealey, A. J.; Cowley, A. R.; Skinner, M. E. G.; Mountford, P. New titanium imido synthons: Syntheses and supramolecular structures. *Inorg. Chem.* 2005, 44, 2882–2894.
- (34) Parsons, T. B.; Hazari, N.; Cowley, A. R.; Green, J. C.; Mountford, P. Synthesis, structures, and DFT bonding analysis of new terminal hydrazido(2-) complexes. *Inorg. Chem.* 2005, in press (IC051271J).

- (35) Adams, N.; Arts, H. J.; Bolton, P. D.; Cowell, D.; Dubberley, S. R.; Friederichs, N.; Grant, C.; Kranenburg, M.; Sealey, A. J.; Wang, B.; Wilson, P. J.; Cowley, A. R.; Mountford, P.; Schröder, M. Discovery of highly active imidotitanium ethylene polymerisation catalysts and their evaluation using high throughput catalyst screening. *Chem. Commun.* **2004**, 434–435.
- (36) Sealey, A. J.; Bigmore, H. R.; Selby, J. D.; Mountford, P. Unpublished results.
- (37) Bennett, J. L.; Wolczanski, P. T. Selectivities in hydrocarbon activation: Kinetic and thermodynamic investigations of reversible 1,2-RH-elimination from (silox)₂('Bu₃SiNH)TiR (silox = 'Bu₃-SiO). J. Am. Chem. Soc. **1997**, *119*, 10696–10719.
- (38) Cundari, T. R.; Klinckman, T. R.; Wolczanski, P. T. Carbon– Hydrogen bond activation by titanium imido complexes. Computational evidence for the role of alkane adducts in selective C–H activation. J. Am. Chem. Soc. 2002, 124, 1481.
- (39) Trösch, D. J. M.; Collier, P. E.; Bashall, A.; Gade, L. H.; McPartlin, M.; Mountford, P.; Radojevic, S. C–N coupling reactions of allenes and methylacetylenes with an imidotitanium complex. *Organometallics* **2001**, *20*, 3308–3313.
- (40) Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade, L. H. Synthesis and structural characterisation of an azatitanacyclobutene. *Chem. Commun.* 2004, 704–705.
- (41) Mountford, P. Reaction of [Cp₂Ti(N^tBu)(py)] with S-H bonds and synthesis of [Cp₂Ti(μ-S)₂TiCp₂]. *J. Organomet. Chem.* **1997**, *528*, 15–18.
- (42) Swallow, D.; McInnes, J. M.; Mountford, P. Titanium imido complexes with tetraaza macrocyclic ligands. *Dalton Trans.* 1998, 2253–2259.
- (43) Bennett, J. L.; Wolczanski, P. T. Energetics of C–H bond activation and ethylene binding to d⁰ transient (silox)₂Ti=NSi¹Bu₃. J. Am. Chem. Soc. **1994**, *116*, 2179–2180.
- (44) Bashall, A.; Collier, P. E.; Gade, L. H.; McPartlin, M.; Mountford, P.; Trösch, D. J. M. C–H bond activation and C–N coupling reaction of methylacetylenes and allenes with an imidotitanium complex. *Chem. Commun.* **1998**, 2555–2556.
- (45) Wang, H.; Chan, H.; Xie, Z. Synthesis, characterization, and reactivity of terminal titanium imido complexes incorporating constrained-geometry carboranyl ligands. *Organometallics* 2005, 24, 3772–3779.
- (46) McGrane, P. L.; Jensen, M.; Livinghouse, T. Intramolecular [2+2] cycloadditions of group IV metal–imido complexes. J. Am. Chem. Soc. 1992, 114, 5459–5460.
- (47) McGrane, P. L.; Livinghouse, T. Synthetic applications of imidotitanium-alkyne [2+2] cycloadditions. J. Am. Chem. Soc. 1993, 115, 11485–11489.
- (48) Fairfax, D.; Stein, M.; Livinghouse, T.; Jensen, M. Scope of the intramolecular imidotitanium-alkyne [2+2] cycloaddition-azatitanetine acylation sequence. *Organometallics* **1997**, *16*, 1523– 1525.
- (49) Cloke, G. N.; Hitchcock, P. B.; Nixon, J. F.; Wilson, P. J.; Mountford, P. One- and two-step [2+2] cycloaddition reactions of group 4 imides with the phosphaalkyne ^tBuCP. *Chem. Commun.* 1999, 661–662.
- (50) Pugh, S. M.; Trösch, D. J. M.; Wilson, D. J.; Bashall, A.; Cloke, F. G. N.; Gade, L. H.; Hitchcock, P. B.; McPartlin, M.; Nixon, J. F.; Mountford, P. Cycloaddition reactions of the titanium imide [Ti-(N¹Bu}{MeC(2-C₅H₄N)(CH₂NSiMe₃)₂}(py]] with ¹BuCP and MeCN. Organometallics **2000**, *19*, 3205–3210.
- (51) Cloke, F. G. N.; Hitchcock, P. B.; Nixon, J. F.; Wilson, D. J.; Tabellion, F.; Fischbeck, U.; Preuss, F.; Regitz, M.; Nyulaszi, L. Synthetic, structural, and theoretical studies on new aromatic 1,2,4-azadiphosphole ring systems. *Chem. Commun.* **1999**, 2363– 2364.
- (52) Bashall, A.; Collier, P. E.; Gade, L. H.; McPartlin, M.; Mountford, P.; Pugh, S. M.; Radojevic, S.; Schubart, M.; Scowen, I. J.; Trösch, D. J. M. C-C and C-N coupling reactions of an imidotitanium complex with isocyanides. *Organometallics* **2000**, *19*, 4784–4794.
- (53) Guiducci, A. E.; Cowley, A. R.; Skinner, M. E. G.; Mountford, P. Novel double substrate insertion versus isocyanate extrusion in reactions of imidotitanium complexes with CO₂. *Dalton Trans.* 2001, 1392–1394.
- (54) Boyd, C. L.; Clot, E.; Guiducci, A. E.; Mountford, P. Pendant arm functionalized benzamidinate titanium imido compounds: Experimental and computational studies of their reactions with CO₂. *Organometallics* **2005**, *24*, 2347–2367.
- (55) Guiducci, A. E.; Boyd, C. L.; Mountford, P. Reactions of cyclopentadienylamidinate titanium imido compounds with CS₂, COS, isocyanates, and other unsaturated organic compounds. *Organometallics*, manuscript submitted (OM050784V).
- (56) Blake, A. J.; McInnes, J. M.; Mountford, P.; Nikonov, G. I.; Swallow, D.; Watkin, D. J. Cycloaddition reactions of titanium and zirconium imido, oxo, and hydrazido complexes supported by tetraaza macrocyclic ligands. *Dalton Trans.* **1999**, 379–391.

- (57) McInnes, J. M.; Blake, A. J.; Mountford, P. Reactions of titanium imido complexes with α-diimines. *Dalton Trans.* **1998**, 3623– 3628.
- (58) McInnes, J. M.; Mountford, P. Transition metal imide/organic imine metathesis reactions: Surprising observations. *Chem. Commun.* **1998**, 1669–1670.
- (59) Thorman, J. L.; Woo, K. L. Synthesis and reactivity of hydrazido-(2-) and imido derivatives of titanium(IV) tetratolylporphyrin. *Inorg. Chem.* 2000, *39*, 1301–1304.
- (60) Ong, T.; Yap, G. P. A.; Richeson, D. A. Catalytic construction and reconstruction of guanidines: Ti-mediated guanylation of amines and transamination of guanidines. *J. Am. Chem. Soc.* 2003, 125, 8100–8101.
- (61) Ong, T.; Yap, G. P. A.; Richeson, D. A. Catalytic C=N bond metathesis of carbodiimides by group 4 and 5 imido complexes supported by guanidinate ligands. *Chem. Commun.* 2003, 2612– 2613.
- (62) Bytschkov, I.; Doye, S. Group IV metal complexes as hydroamination catalysts. *Eur. J. Org. Chem.* 2003, 935–946.
- (63) Pohlki, F.; Doye, S. The catalytic hydroamination of alkynes. *Chem. Soc. Rev.* 2003, 32, 104–114.
- (64) Odom, A. L. New C-N and C-C bond forming reactions catalyzed by titanium complexes. *Dalton Trans.* 2005, 225–233.
- (65) Haak, E.; Bytschkov, I.; Doye, S. Intermolecular hydroamination of alkynes catalysed by dimethyltitanocene. *Angew. Chem. Int. Ed.* **1999**, *38*, 3389–3391.
- (66) Johnson, J. S.; Bergman, R. G. Imidotitanium complexes as hydroamination catalysts. J. Am. Chem. Soc. 2001, 123, 2923– 2924.
- (67) Straub, B. F.; Bergman, R. G. The mechansim of hydroamination of allenes, alkynes, and alkenes catalyzed by cyclopendadienyltitanium-imido complexes. *Angew. Chem. Int. Ed.* 2001, 40, 4632– 4635.
- (68) Ackermann, L.; Bergman, R. G.; Loy, R. N. Use of group 4 bis-(sulfonamido) complexes in the intramolecular hydroamination of alkynes and allenes. J. Am. Chem. Soc. 2003, 125, 11956– 11963.

- (69) Ong, T.; Yap, G. P. A.; Richeson, D. A. Formation of a guanidinatesupported titanium imido complex. *Organometallics* 2002, 21, 2839–2841.
- (70) Lorber, C.; Choukroun, R.; Vendier, L. Hydroamination of alkynes catalyzed by imido complexes of titanium and vanadium. *Organometallics* 2004, 23, 1845–1850.
- (71) Li, Y.; Shi, Y.; Odom, A. L. Titanium hydrazido and imido complexes. J. Am. Chem. Soc. 2004, 126, 1794–1803.
- (72) Cloke, F. G. N.; Hitchcock, P. B.; Nixon, J. F.; Wilson, D. J. First catalytic dihydroamination of a phosphaalkyne. *Chem. Commun.* 2000, 2387–2388.
- (73) Asmus, S. M. F.; Regitz, M. Organophosphorus compounds. Part 163: Reactivity of phosphaalkynes towards *in situ* generated titanium imido complexes. *Tetrahedron Lett.* 2001, 42, 7543–7545.
- (74) Male, N. A. H.; Skinner, M. E. G.; Bylikin, S. Y.; Wilson, P. J.; Mountford, P.; Schröder, M. Macrocycle-supported titanium complexes with chelating imido ligands. *Inorg. Chem.* 2000, 39, 5483–5491.
- (75) Nielson, A. J.; Glenny, M. W.; Rickard, C. E. F. 2-*tert*-Butyl and 2-phenylimido complexes of titanium(IV) and their olefin polymerisation activity. *Dalton Trans.* 2001, 232–239.
- (76) Bolton, P. D.; Clot, E.; Cowley, A. R.; Mountford, P. Well-defined imidotitanium alkyl cations: Agostic interactions, migratory insertion versus [2+2] cycloaddition, and the first structurally authenticated AIMe₃ adduct of any transition metal alkyl cation. *Chem. Commun.* 2005, 3313–3315.
- (77) Gardner, J. D.; Robson, D. A.; Rees, L. H.; Mountford, P. Titanium tert-butyl- and trimethylsilyl-imido complexes with monopendant arm triazacyclononnane ligands. *Inorg. Chem.* 2001, 40, 820.
- (78) Jin, J.; Chen, E. Y. X. Chiral ansa-titanocene imido complexes. Organometallics 2002, 21, 13–15.
- (79) Lewkebandara, T. S.; Sheridan, P. H.; Heeg, M. J.; Rheingold, A. L.; Winter, C. H. Terminal and bridging imido complexes from titanium tetrachloride and primary amines. *Inorg. Chem.* 1994, 33, 5879–5889.

AR030244Z